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Abstract— Humans rely on the synergy of their senses for
most essential tasks. For tasks requiring object manipulation,
we seamlessly and effectively exploit the complementarity of
our senses of vision and touch. This paper draws inspira-
tion from such capabilities and aims to find a systematic
approach to fuse visual and tactile information in a rein-
forcement learning setting. We propose Masked Multimodal
Learning (M3L), which jointly learns a policy and visual-
tactile representations based on masked autoencoding. The
representations jointly learned from vision and touch improve
sample efficiency, and unlock generalization capabilities be-
yond those achievable through each of the senses separately.
Remarkably, representations learned in a multimodal setting
also benefit vision-only policies at test time. We evaluate M3L
on three simulated environments with both visual and tactile
observations: robotic insertion, door opening, and dexterous
in-hand manipulation, demonstrating the benefits of learning a
multimodal policy. Videos of the experiments are available at
https://sferrazza.cc/m3l_site. Code will be released
upon acceptance.

I. INTRODUCTION

Humans are capable of exploiting the synergies and com-
plementarities of their senses [1], [2], [3]. For example,
when grasping an object, we fully rely on our sense of
vision at first, since no physical feedback is available until
contact is made. Once the object has been reached, visual
feedback becomes partly or fully occluded by the human
hand. Thus, vision-based reasoning is naturally replaced by
rich touch feedback. Human reasoning and decision-making
present uncountable similar examples, where different sen-
sory modalities seamlessly cooperate with each other.

However, in robotic manipulation, vision and touch have
mostly been studied independently, mainly due to the
delayed development of tactile sensors compared to the
widespread availability of high-performance visual sensing.
While vision-based manipulation research has shown im-
pressive achievements through modern machine learning
approaches [4], [5], incorporating contact feedback with
vision is crucial to broaden the capabilities of robotic ma-
nipulation, e.g., dealing with visual occlusion, manipulating
fragile objects, and improving accuracy. Yet, a large part
of touch-based manipulation research has so far focused
on showcasing the potential of new high-resolution tactile
sensors [6], [7], often limited to proof-of-concepts based on
the assumption that visual sensing is unavailable.

In this paper, we propose Masked Multimodal Learning
(M3L), which leverages both visual and tactile sensing
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modalities by systematically fusing them for manipulation
tasks. Specifically, we focus on sample efficiency and gen-
eralization of reinforcement learning (RL) via multimodal
representations extracted across vision and touch. To acquire
such generalizable multimodal representations, we use a mul-
timodal masked autoencoder (MAE) [8] that learns to extract
condensed representations by optimizing a reconstruction
loss based on raw visual and tactile observations, while
simultaneously optimizing a policy that is conditioned on
such representations.

We show that the multimodal representations learned
through M3L result in better sample efficiency and stronger
generalization capabilities compared to settings that treat
each modality separately. In particular, M3L demonstrates
better zero-shot generalization to unseen objects and varia-
tions of the task scene, exploiting the representation power
provided by multimodal reasoning. Moreover, we observe
that the aforementioned generalization capabilities are sub-
stantially retained even if the representation encoder, trained
with multimodal data, is deployed to a vision-only policy.
This suggests that the generalization benefits of touch are
strongly intertwined with how the policy learns its repre-
sentations, offering the possibility to trade off a limited loss
of performance with the additional complications of using
touch sensors for robot deployment in the real world.

II. RELATED WORK

Reinforcement Learning for Manipulation. The grow-
ing application of computer vision in robotics has enabled
robotic manipulation policies trained from raw pixel observa-
tions through reinforcement learning (RL) [4], [5]. However,
a vision-based policy struggles with occlusions and only
enables a delayed response for contact-rich tasks.

Thanks to the recent advances in the development of
high-resolution tactile sensors [10], [11], [12], [13], [14],
[15], touch-based manipulation has tried to address the
visual occlusion problem and enable reactive contact-rich
manipulation with local information from tactile sensors.
Common examples are in-hand manipulation [16], [17],
Braille alphabet reading [18], pendulum swingups using
learned feedforward [19] or feedback policies [20], or peg-
hole insertion using primitive trajectories [21], [22] and task-
specific controllers [23]. However, these approaches lack the
use of visual information [24], [25], which is often required
for global reasoning about the task.

The combination of vision and contact feedback has been
investigated in various settings, such as model predictive
control [26] and behavioral cloning [27]. More recently,

https://sferrazza.cc/m3l_site


ViT Encoder

Masking

Image Tactile Force Maps 

ViT Encoder

CNNCNN

ViT Decoder

No Masking

Representation Learning
Policy Learning

+

𝜋!(𝑎|𝑧)

Multimodal Reconstruction Objective

ℒ	=	ℒ!!"+ℒ#$%

ℒ!!"

𝑧

𝑧

Representation Learning Objective  ℒ#$%Reinforcement Learning Objective  ℒ!!"

No Masking

Fig. 1: Masked Multimodal Learning (M3L) framework. M3L simultane-
ously optimizes a representation learning loss and a reinforcement learning
objective. A policy is trained using Proximal Policy Optimization (PPO)
[9], conditioned on multimodal representations learned through a masked
autoencoder (MAE) [8]. By attending to each other within a unified vision
transformer (ViT) encoder, visual and tactile data provide representations
that lead to more generalizable policy learning. Note that the ViT encoders
used for representation and policy learning share weights with each other.

various efforts have also been made in the context of model-
free RL [28], [29], [30], which is the focus of our work
and promises to learn control policies without the need for
models of the system at hand or expert demonstrations.
An end-to-end RL strategy from visual and tactile data,
pre-processed through two separate neural networks, was
shown in [31] on the Robosuite benchmark, where tactile
signals were obtained through an approximation of the object
depth map. In our work, rather than learning end-to-end, we
focus on sample efficiency and generalization through a self-
supervised representation learning objective.
Representation Learning for Manipulation. Representa-
tion learning has played a key role in reducing sample com-
plexity when applying RL to high-dimensional observation
spaces [32], [33], [34], [35]. In this context, several studies
have focused on extracting condensed representations from
tactile inputs [36], [37], [38]. A notable exception is [39],
where a force-torque sensor was used in combination with
vision, and a self-supervised learning architecture was found
to improve sample efficiency compared to learning from raw
data.

More recently, representation learning has been applied
from visual and tactile data in contexts different from RL.
Specifically, [40] trained tactile and visual encoders in a self-
supervised manner, and exploited the extracted representa-
tions via imitation and residual learning [41] for manipula-
tion tasks. In [42], a general perception module was proposed
by training two separate (vision and touch) encoders using a
contrastive approach. Our work differs in that we focus on
fusing visual and high-resolution tactile inputs through a joint
encoder that learns interrelations between the two modalities,
particularly enhancing generalization capabilities. We focus
on a specific class of representation learning algorithms,
based on masked autoencoding [8].

Masked Autoencoders for Manipulation. The idea of
learning representations by reconstructing the masked parts
of images [43], [44] has recently been scaled up inspired
by the idea of masked language modeling in the language
domain [45] and the introduction of the Transformer archi-
tecture [46]. Notably, [8] introduced Masked Autoencoders
(MAE) that randomly mask patches of images and recon-
struct the masked parts based on the vision transformer
(ViT) architecture [47]. Recent works have demonstrated that
MAE representations can be useful for learning manipulation
policies from pixel observations [34], [35], [48], [33], [49]. In
particular, the works closely related to ours have proposed
to learn joint representations with MAEs and utilize it for
robotic manipulation. For instance, [49] utilized frozen rep-
resentations from a pre-trained vision-language multimodal
MAE [50] for learning instruction-following manipulation
policies. [48] trained an MAE with visual observations from
multiple cameras and utilized it for RL. In this context, our
work further demonstrates that learning joint vision-touch
representations by training a multimodal MAE improves the
sample efficiency and generalization of robotic manipulation
policies.

III. BACKGROUND

Reinforcement Learning (RL). We formulate the prob-
lem as a Markov decision process (MDP) [51], which is
defined as a tuple (S,A, p, r, γ). Here, S denotes the state
space, A denotes the action space, p(st+1|st, at) is the
transition dynamics, r is the extrinsic reward function rt =
r(st, at), and γ ∈ [0, 1] is the discount factor. The goal
of RL is to train a policy π to maximize the expected
return. Our approach is compatible with any RL algorithm,
but here we use Proximal Policy Optimization (PPO) [9]
as our underlying RL algorithm due to its simplicity and
scalability with parallel environments [52]. We refer to the
online appendix1 for more details about PPO.
Masked Autoencoding for Representation Learning.
Masked autoencoding [8] is a self-supervised learning
method that learns image representations by reconstructing
the masked parts of images given the unmasked parts.
Specifically, a masked autoencoder (MAE) first divides the
images into non-overlapping square patches and adds posi-
tional embeddings [46] to the patches. Then, it randomly
masks the patches, and a vision transformer (ViT) [47]
encoder computes the visual embeddings of the remaining
(unmasked) patches through a series of transformer layers
[46]. Because the ViT encoder only processes a small sub-
set of full patches (e.g., typically 25%), training becomes
more compute-efficient and scalable. For decoding, learnable
mask tokens [45] are concatenated with the unmasked patch
representations and the positional embeddings are added in
order to represent the position of masked patches to be recon-
structed. Finally, a ViT decoder takes the concatenated inputs
and outputs predicted pixel patches. All model parameters are
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Fig. 2: Visualization of observations from the tactile insertion environment:
(a) 64×64 visual input and (b, c) two 32×32 tactile inputs (taxels), where
the color of the arrows indicates pressure (red means high pressure) and the
direction indicates shear, following the convention in [53].

updated to minimize the mean squared error (MSE) between
the predicted pixel patches and the original patches.
High-resolution Tactile Sensing Measurements. Modern
high-resolution tactile sensors [54], [55], [56] may provide
touch feedback in the form of spatially distributed quantities,
such as deformation fields, strain fields, and force maps. In
particular, force maps have been shown to be measurable
in the real world through a variety of tactile sensors [57],
[58], [59], are readily available through physics simulators
(e.g., MuJoCo touch grid or the approach presented in
[53]), and have been demonstrated as a valid abstraction
to achieve successful sim-to-real transfer in highly dynamic
manipulation tasks [20]. The elements comprising a force
map are generally denoted as “taxels”, i.e., the tactile dual
of pixels. Such maps are often represented in a similar way
as images, that is, in a channels× height× width form,
where the channels are usually the three components: two
for shear and one for pressure of the contact force, as shown
in Figure 2.

IV. METHOD

In this section, we present Masked Multimodal Learning
(M3L), a representation learning technique for reinforcement
learning that targets robotic manipulation systems provided
with vision and high-resolution touch. Specifically, M3L
learns a policy conditioned on multimodal representations,
which are extracted from visual and tactile data through a
shared representation encoder. As illustrated in Figure 1,
the M3L representations are trained by optimizing at the
same time representation learning and reinforcement learning
objectives:

L = Lrep + LPPO, (1)

where Lrep is the multimodal representation learning objec-
tive (Section IV-A) and LPPO is PPO’s reinforcement learning
objective (Section IV-B).

A. Representation Learning

M3L achieves multimodal representation learning by using
both image and tactile data to update an MAE that learns to
reconstruct both pixels and taxels at the same time. This can
be written as following:

Lrep = MSEpixels + βT · MSEtaxels, (2)

where βT is a hyperparameter that balances the two MSE
losses for vision and touch.

Note that as opposed to other representation learning
approaches, such as contrastive learning, MAEs do not
need discovering new data augmentations and invariances to
design positives and negatives. On the other hand, patching
and reconstructing in MAEs seamlessly apply to tactile data.
In addition, the transformer architecture and the masking
scheme support input sequences of variable length and
facilitate design strategies particularly suited for multimodal
data, e.g., vision and touch.

We list below the most relevant implementation details of
our representation learning framework:
Early Convolutions. The MAE encoder has two prepro-
cessing convolutional neural networks (CNNs) that compute
convolutional features from pixels and taxels, respectively.
Such convolutional features are then masked in place of
the raw input patches. These early convolution layers help
capturing small details in reconstruction [33].
Positional and Modality Embeddings. As standard for
transformers, we add 2D sin-cos positional embeddings [60]
to both the encoder and decoder features. In addition, we also
add learnable 1D modality embeddings representing either
visual or tactile streams, following the implementation of
[50] for vision and language.
Reconstruction Pipeline. Convolutional features are com-
puted as described above for k frames concatenated over
time. In particular, we concatenate the frames in the channel
dimension (e.g., concatenation of RGB images results in a
3k-channel tensor). Frame stacking turned out to be crucial
for success on the environments considered in our exper-
iments (see Section VI). We then uniformly mask across
visual and tactile features. Finally, we feed the unmasked
convolutional features from both vision and touch into the
MAE for reconstruction, so that the ViT encoder can attend
to both modalities.

B. Policy Learning with M3L

The policy learning closely follows PPO with the excep-
tion of how the observations are extracted from the raw
input data. At each time step, the image and tactile data
are fed into the preprocessing CNNs. The CNN features
are then added to the positional and modality embeddings
and processed through the MAE encoder, without applying
any masking. The extracted multimodal embeddings are then
provided to the actor and critic networks. Each of these
consist of a transformer layer that processes the embeddings
and aggregates them through a global average pooling layer,
and a multilayer perceptron (MLP) that outputs either the
value (for the critic) or the mean of the action distribution
(for the actor). Note that the gradients computed through the
PPO loss are also propagated up to the MAE encoder and
the CNNs. As a result, the CNNs and MAE encoder are
updated to simultaneously optimize both representation and
task learning. The overview of M3L is illustrated in Figure 1.
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Fig. 3: We evaluate M3L on three simulated environments: (a) Tactile
insertion, (b) Door opening, and (c) In-hand cube rotation. For each task,
the left images represent initial configurations and the right images show
task completion.

V. SIMULATION ENVIRONMENTS

We perform our experiments in three simulated envi-
ronments using MuJoCo [61]’s touch-grid sensor plugin,
which aggregates contact forces into taxels. To the best
of our knowledge, the following are the first examples
where high-resolution force fields have been included in a
MuJoCo robotics environment, which can also seamlessly
render visual information. We will make our environments
public for reproducibility and further research in visual-
tactile manipulation.

A. Tactile Insertion

The tactile insertion environment consists of a peg object
and a target frame where the peg can be tightly inserted,
and the Menagerie’s [62] Robotiq 2F-85 parallel-jaw gripper
model, as shown in Figure 3a. Each finger has the silicone
pad modeled as a rectangular prism (box geometry in
MuJoCo). In MuJoCo, contact sensing with a box primitive
is computed only at the four vertices. Therefore, we split
the collision mesh of the box into a grid of smaller boxes,
to increase the number of candidate contact points, and
consequently the effective resolution of the force map. The
resulting tactile observation is in the form of two 32×32 taxel
maps (one per finger). Each taxel corresponds to a 3D force
vector, which represents both shear and pressure forces, as
shown in Figure 2. In addition, the observation also includes
a 64× 64 image.

(a) Training peg (b) Rectangle peg (c) V-shape peg

Fig. 4: We use 18 different training peg shapes, and 2 novel pegs (rectangle
and V-shape) to test generalization on the tactile insertion task.

Each episode starts with the peg held between the gripper
fingers with a randomized initial position of the gripper in
the 3D space. We also randomize the shape of the peg (see
all 18 peg shapes in the online appendix1), the shape of the
target frame (square or circle), and the target hole location.
The control inputs to the system are the 3D coordinates of
the floating gripper, while we fix both the gripping force
and gripper rotation. The task comprises 300 steps and is
considered to be solved once the object position is within
a small threshold from the target position. We use a dense
reward, which is the negative distance between the peg and
the target position, as well as a sparse task completion reward
of 1000.

Note that while [22], [53] also address the insertion task
with tactile information, they heavily rely on prior knowledge
(e.g. initial estimate of the insertion region and open-loop
insertion trajectory) and only learn to correct errors online
using tactile information. On the other hand, our goal is to
benchmark a general RL approach that can utilize vision
and touch together to generate raw control actions, without
requiring any prior information.

B. Door Opening

The door opening task from Robosuite [63] requires to
open a locked door by turning the door handle and then
pulling the door with a Franka robot arm and a Robotiq
2F-85 gripper, as shown in Figure 3b. We extend this
environment by adding tactile sensors to gripper fingers as
in the tactile insertion environment. The observation space
comprises a 64× 64 camera image and two 32× 32 tactile
maps. The action space consists of 3D delta end-effector
position and rotation. Note that the gripper is always closed,
holding the door handle.

To make the exploration problem easier and focus on
generalizable skill learning, we provide additional dense
rewards for opening the door and a sparse success reward
of 300 when the door is opened. We initialize the robot
to hold the door handle and the position of the door is
fixed at (0.07, 0.00). Each episode lasts for 300 steps but
terminates when the door is opened or the gripper detaches
from the door handle. To test generalization capability, we
randomly initialize the door position, x ∼ [0.06, 0.10], y ∼
[−0.01, 0.01] and use 10× higher friction and damping
coefficients for hinges of both the door and door handle
during testing.



C. In-hand Rotation

The in-hand cube rotation task is based on the in-
hand block reorientation environment [64] provided through
Gymnasium-Robotics. The environment relies on a Shadow
Robot Dexterous Hand with 20D actions. We augment the
visual observation with high-resolution force maps. Specifi-
cally, we add 3×3 force maps to each of the finger phalanges
and to the palm of the hand. Through the use of zero-
padding, we rearrange such force readings into a 32 × 32
map, as illustrated in the the online appendix1.

The task consists in reorienting a colored cube to a
predefined configuration, overlaid next to the actual hand-
cube system (see Figure 3c). We use a reward of 100 when
the cube is within a threshold from the target, in addition to
the dense reward implemented in the original environment.
To test generalization, we double the mass of the cube
and slightly perturb the camera pose, and attempt the same
reorientation task.

We found that this task requires a higher level of accuracy
in the representations (e.g., to properly detect the different
faces of the cube) compared to the previous two. For this
reason, rather than directly optimizing the sum of two ob-
jectives in Equation (1), we perform a reinforcement learning
gradient descent step every n representation learning gradient
steps. In particular, given an RL batch size B, we split this
batch in n chunks for the representation learning phase and
then use the full batch for the reinforcement learning phase.

We present additional in-hand rotation tasks with different
objects, e.g., an egg and a pen, in the online appendix1.

VI. EXPERIMENTS

In this section, we study the advantages of M3L in visual-
tactile manipulation compared to baselines, and explain our
design choices. In particular, we aim to answer the following
questions:

• Does our multimodal approach improve generalization
when manipulating unseen objects or dealing with scene
variations?

• Is the representation learning loss beneficial compared
to training the same architecture end-to-end via PPO?

• Can representations learned in a multimodal setting
benefit vision-only deployment?

• Does attention across vision and touch lead to better
overall performance?

A. Compared Methods

We compare the following approaches:
• M3L: our approach jointly learns visual-tactile rep-

resentations using a multimodal MAE and the policy
using PPO.

• M3L (vision policy): while representations are trained
from both visual and tactile data, the policy takes only
visual data, exploiting the variable input length of the
ViT encoder.

• Sequential: an M3L architecture trained independently
for the different modalities in sequence. At each MAE
training iteration, we first propagate the gradient for

vision and then for touch. In this way, visual features
cannot attend tactile features and vice versa.

• Vision-only (w/ MAE): an MAE approach with the
same architecture as M3L, but trained only from visual
inputs.

• End-to-end: a baseline that trains the policy end-to-end
but with the same encoder architecture as M3L.

B. Generalization Experiments

To evaluate the capabilities unlocked by multimodality,
in this work we considered scenarios where both modalities
are informative during most of the training episodes, i.e.,
visual information is most of the times sufficient to learn
the task. Such a setting is especially suitable to isolate
the effect of the multimodal representations (compared, for
example, to the use of a single modality). In particular,
we investigate the generalization capabilities unlocked by
the multimodal representations when dealing with unseen
objects or conditions. For the tactile insertion, we pretrain
a policy on the set of 18 training objects, and test the zero-
shot generalization on two different objects, which are a
rectangular prism and V-shaped object (see Figure 4). Such
objects are not seen during training, and the V-shaped object
considerably differs from the training objects. For the door
opening task, we randomize the initial position of the door,
as well as the friction and damping coefficients of the hinges
as described in Section V-B. All of these parameters were
instead fixed during training. Finally, for the in-hand rotation,
we double the mass of the cube and slightly perturb the
camera pose.

The results are shown in Figure 5, with M3L consistently
competing with or outperforming the end-to-end baseline
and all the other representation learning approaches on
all tasks. In particular, M3L substantially outperforms the
vision-only approach, exploiting the power of multimodal
representations. While the sequential baselines is competitive
with M3L on the tactile insertion and in-hand reorientation
tasks, it performs considerably worse on the door opening
task. In particular, sequential training largely degrades due to
observed training instabilities (see Figure 6), indicating that
attention across modalities enables the extraction of stronger
and more general representations.

Interestingly, we observe a considerable improvement
of M3L with vision policy over the vision-only baseline.
They key insight is that using touch only for training the
representation encoder is sufficient to substantially fill the
gap with M3L on all tasks. This opens several remarkable
opportunities, namely, I) a limited loss of generalization per-
formance when touch is used at training time, but removed
at deployment time, II) the possibility of training multimodal
representations exclusively in simulation, and transferring a
stronger vision policy to the real-world, wherever visual sim-
to-real transfer is achievable [65].

C. Training Performance

We report the learning curves for each task in Figure 6.
The methods based on representation learning typically
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Fig. 6: Learning curves investigating the advantages of M3L against baselines.
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exhibit higher sample efficiency compared to the end-to-
end baseline, by exploiting the unsupervised reconstruction
objective during training. M3L is the only approach that
consistently achieves best in-task performance across the
three tasks.

Finally, Figure 7 ablates the number of frames stacked
together as an input to M3L (as explained in Section IV-A)
for the tactile insertion task. The result may look counter-
intuitive, given that the gripper is position controlled, and a
single frame may appear sufficient to extract full information
about the task. However, we hypothesize that when the
framework is conditioned on a single frame, the encoder may
struggle with visual occlusions. More importantly, contact
information becomes much more relevant when stacking
multiple frames, which act as a memory of a recent contact
event. On the contrary, a single frame only signals current
contact information, which immediately vanishes a step
away from contact. Note that 4 frames are used as input
to all the baselines considered in Figure 5 and Figure 6.
Additional baselines and experiments are described in the
online appendix1, where we compare our representations
against MVP [34], CLIP [66], and other related approaches
[30].

VII. CONCLUSION

We have presented a systematic representation learning
approach, Masked Multimodal Learning (M3L), to fuse
visual and tactile data when using reinforcement learning for
manipulation tasks. The results indicate that in addition to
being sample efficient compared to an end-to-end baseline,
the multimodal representations improve generalization to
unseen objects and conditions over a variety of baselines.

We notably observed how the benefits of training multimodal
representations is partly retained when the representation
encoder is applied to a vision policy. Finally, while con-
tributing to tasks that cannot be solved with vision alone
is certainly an important application of tactile sensing, this
work indicates that touch can considerably contribute to
efficient and generalizable manipulation also for tasks where
vision appears to be sufficient. Therefore, we hope that this
work opens new perspectives to incorporate this modality in
a wider range of applications and learning frameworks.
Limitations and Future Work. Our method suffers from
some of PPO’s drawbacks, e.g., higher sample complexity
compared to off-policy algorithms and struggle with diffi-
cult exploration problems. However, the modularity of the
representation learning block makes it possible to combine
it with other RL algorithms, and this will be the subject of
future work.

An additional limitation of our approach is that it uses
tactile data at all times, even when such data are uninfor-
mative, e.g., when contact is not taking place, which can
potentially lead to slowing down learning. This information
sparsity has been investigated in the past and a plausible
solution indicated as tactile gating [31] may also be applied
to our method.

Previous work that only relied on visual data [34] lever-
aged MAEs in a pretraining fashion, with a large encoder
trained off-domain and directly deployed for learning a
variety of tasks. Part of this success is due to the large
availability of image and video datasets available to the
research community [67], [68]. This is in contrast to the
scarce availability of tactile datasets, often challenging to col-
lect, especially when paired vision-touch data are required,



such as for our approach. An interesting research direction
would be to investigate how to leverage the large amount of
available image data while only requiring a smaller portion of
paired vision-touch data in a pretraining-finetuning fashion.
Considerations for Real-World Application. The current
results were presented in simulation environments, which
allowed us to thoroughly analyze and compare a wide range
of architectural choices in a scalable manner. However, real-
world applications may largely benefit from the findings of
this work. Specifically, our algorithm shows improvements
in sample efficiency compared to PPO from raw inputs (see
Figure 6). Sample efficiency, together with the generalization
properties showed by our approach, mark a crucial step
towards the application of reinforcement learning on real-
world robots, where we want to minimize both sample
collection and retraining for each modification of the training
task. Additionally, the performance benefits of using an
M3L representation encoder for vision policies renders the
possibility to train such policies in simulation with the
availability of tactile signals, enabling the transfer of stronger
vision policies to the real world, e.g., through the use of
visual domain randomization.

Finally, the potential benefits of our work to real-world
applications are confirmed by the successful transfer of
approaches based on masked autoencoding from simulation
to real-world systems in [48], [35]. In addition, the choice
of force maps as tactile inputs has also proved its efficacy
in sim-to-real transfer, as detailed in [20], [53].
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