
Numerical Search for Local (Partial) Differential Flatness

Carmelo Sferrazza, Diego Pardo and Jonas Buchli

Abstract— Differential flatness is a property of certain sys-
tems that greatly simplifies the generation of optimal and
dynamically feasible trajectories. Using a differentially flat
model, there is no need to integrate the system dynamics
to retrieve the states and the constraints of the optimization
problem are simpler. Recently, the concept of partial differential
flatness has been introduced covering a broader class of systems.
In particular, it allows to reduce the need for integration
by limiting it to a subset of the states. However, finding
an analytical expression for the (partial) differential flatness
requires the manipulation of the equations of motion in a very
specific manner such that a series of properties are fulfilled. In
general, finding such analytical model is not straightforward
nor compatible with algorithmic models. In order to tackle
this problem, in this paper we present a numerical method
to find a (partially) differentially flat model of a system
around a collection of states and inputs trajectories. We present
results on three underactuated nonlinear systems (cart-pole,
planar ballbot and a 3D quadrotor). As use case examples, we
show online trajectory re-planning tasks. The validity of the
trajectories obtained with the locally flat models is verified by
forward integrating the original equations of motion together
with an optimal stabilizer.

I. INTRODUCTION

Planning dynamically feasible and optimal trajectories
in nonlinear systems is challenging. Recently, numerical
trajectory optimization has received considerable attention
in robotics [15], [16], [17]. However, solving a nonlinear
optimization problem requires a significant amount of it-
erations (and therefore time). Most of the computational
complexity comes from the constraints corresponding to
the differential equations describing the dynamics of the
system [18]. Conversely, for a small class of systems, known
as differentially flat, the trajectory optimization problem is
reduced to a linearly constrained program. Specifically, the
differential flatness property makes possible to avoid the
integration of the dynamics in order to retrieve the states
and inputs trajectories. This is very useful in the case of
online re-planning, where convergence time is critical.

Roughly speaking, a system is differentially flat if it is
possible to find a flat output of the same dimension of
the input vector, such that all the states and inputs can be
expressed as a function of this flat output and its derivatives.
Clearly this is a very restrictive property, and therefore most
underactuated systems are not differentially flat. In order to

This research has been funded through a Swiss National Science Founda-
tion Professorship award to Jonas Buchli and by the Swiss National Centre
of Competence in Research Robotics (NCCR Robotics).

Carmelo Sferrazza carmelos@student.ethz.ch, Diego Pardo
depardo@ethz.ch and Jonas Buchli buchlij@ethz.ch are
with the Agile Dexterous Robotics Lab at the Institute of Robotics and
Intelligent Systems, ETH Zürich, Switzerland.

tackle this problem, a broader class of systems, known as
partially differentially flat, have been recently introduced [1].

Partial differential flatness requires only a partition of the
states, as well as the inputs, to be a function of the flat output
and its derivatives. The only further requirement is that the
remaining states must be given by chains of integrators,
where the derivatives of the highest order elements of each
chain is a function of the flat output and its derivatives.
Formal definitions of both types of differential flatness are
shown in Section II.

The concepts of differential flatness and feedback lin-
earization [1] are highly interconnected. However, differen-
tial flatness is a structural property and it does not imply the
linearization of the system. Such structure can be exploited
for designing control and trajectory planning algorithms [19].
There are many examples in the literature where differential
flatness has been proven to be very effective for both
optimal trajectories generation and tracking control [3], [9].
Moreover, criteria for proving differential flatness have been
shown for different systems [6]. In [7] a catalog of some
differentially flat mechanical systems has been provided. In
[5] a direct characterization of the system using matrices
expressing the states and inputs as a function of a linear
flat output and its time derivatives has been proposed. In
[4] it has been shown how the flat outputs can be retrieved
in uniformly controllable linear time-varying systems, as a
linear combination of the states. In [1] sufficient conditions
have been shown in order to prove partial differential flatness.
Recently the concept of differential flatness and partial dif-
ferential flatness have been proven and exploited in different
mechanical systems on principal bundles [8]. These examples
apply to a small class of systems and usually provide
only sufficient conditions for proving or excluding (partial)
differential flatness. However, there is still the problem of
finding analytical expressions for the flat output and the
functions relating it to the states and inputs in more general
cases.

In this paper we present a method based on a numerical
procedure to discover local (partial) differential flatness.
Given a set of inputs and states trajectories, this method finds
a mapping between the flat output and the system states and
inputs. The method is formulated as an optimization problem
that returns a local flat model that can then be used for
online trajectory re-planning. This is very useful for systems
where finding the analytical flat model is not straightforward
and for numerical models (i.e. derived from algorithms [2])
where discovering analytical (partial) differential flatness is
not evident.

Here we apply the method to three systems (cart-pole,

planar ballbot and 3D quadrotor). As use cases we present
problems where the flat model is used for online optimal
trajectory re-planning. Moreover, in order to verify the fea-
sibility of the results, we show the forward integration of the
original equations of motion using the planned trajectories
together with an optimal feedback stabilizer. Results show
that the re-planning process may be executed online using
the numerical flat model.

The rest of the paper is structured as follows. Section
II presents the formal definitions of (partial) differential
flatness, introducing the mathematical notation for the rest
of the discussion. Section III introduces the numerical search
for (partial) differential flatness, formulated as an optimiza-
tion problem. Section IV presents three examples where
the method has been applied, and where the results of the
numerical search are used in an online re-planning scenario.
Finally, Section V lists the benefits and drawbacks of the
approach and discusses future extensions, while Section VI
presents the conclusions.

II. DEFINITIONS

In this section we show the formal definitions for Differen-
tial Flatness and Partial Differential Flatness. For a complete
derivation see [1], [3].

A. Differential Flatness

The dynamics of a given system is represented by a set
of differential equations,

ẋ(t) = f (x(t),u(t)) (1)

where x ∈Rn represents the states of the system and u ∈Rm

the vector of control inputs. The system is differentially flat
if there exist “flat” outputs y ∈ Rm, such that all the states
and inputs can be expressed as a function of the flat outputs
and a finite number of their derivatives. Formally, the system
is differentially flat if there exist functions ξ ,ψ,χ , and finite
integers p,q such that:

y = ξ (x,u, u̇, · · · ,u(p))

x = ψ(y, ẏ, · · · ,y(q))
u = χ(y, ẏ, · · · ,y(q))

(2)

where the apices (j) indicate the j-th derivatives. This model
is equivalent to (1) and can be used to efficiently generate
optimal trajectories.

B. Partial Differential Flatness

A system is partially differentially flat if a partition of the
states exists,

x =
[

xr
xur

]
xr ∈ Rnr , xur ∈ Rnur , nur = n−nr, nr ≤ n

such that the retrievable states, xr, and all the inputs can
be expressed as a function of the flat outputs, y ∈Rm, and a
finite number of their derivatives. Additionally, the dynamics
of the unretrievable states, xur, must be given by one or more
chains of integrators. Finally, the derivative of the highest

order elements of each of these chains must be expressed as
a function of the flat outputs and their derivatives.

Formally, the system is partially differentially flat if there
exist functions ξ ,ψ,χ , finite integers p,q, l, matrices Ai and
bi for i = 1, · · · , l, such that,

y = ξ (xr,u, u̇, · · · ,u(p))

xr = ψ(y, ẏ, · · · ,y(q))
u = χ(y, ẏ, · · · ,y(q))

(3)

and,

ẋur =

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Al

xur +

b1
b2
...

bl

 (4)

where l is the number of chains of integrators, and Ai and
bi are given by,

Ai =

[
0 I
0 0

]
, bi =

[
0

hi(y, ẏ, · · · ,y(q))

]
where hi is a smooth scalar function. The dimensions of the
identity (I) and zero (0) matrices/vector depend on the length
of each chain of integrators.

For nr = n, the definition of partial differential flatness is
equivalent to the one of differential flatness. Thus, the former
encompasses a larger class of systems.

III. NUMERICAL SEARCH

Finding an analytical expression for the flat outputs is not
always evident. Even for relatively simple system dynamics,
the functions relating the flat outputs with the states and the
inputs are often hard to derive.

In this section, a numerical approach to prove local (par-
tial) differential flatness is described. The main assumption
of this method is that a collection of feasible states and
inputs trajectories is available. Additionally, we assume that
the (partially) differentially flat model can be approximated
using a parametric model based on a set of basis functions.

A. Local Differential Flatness

Let us approximate ξ in (2) as a linear combination of
certain basis functions of the states, inputs and a finite
number of derivatives of the latter, i.e.,

y u
N

∑
i=1

ρi ·φi(x,u, u̇, · · · ,u(p)), (5)

where N represents the number of basis functions, ρi ∈
Rm is a weighting vector and φi describes a scalar basis
function. Thus, the function describing the flat outputs can
be expressed in a matrix form as,

y = P ·Φ(x,u, u̇, · · · ,u(p)),

where,

P =
[
ρ1 · · · ρN

]
∈ Rm×N , Φ =

φ1
...

φN

 ∈ RN .

Let us also approximate ψ and χ as a linear combination
of certain scalar basis functions of the flat output and a
defined finite number of its derivatives. i.e.,

x u
L
∑

i=1
κi ·θi(y, ẏ, · · · ,y(q))

u u
L
∑

i=1
ωi ·θi(y, ẏ, · · · ,y(q)).

(6)

where κi ∈ Rn and ωi ∈ Rm. This relation can also be
expressed in matrix form,

x = K ·Θ(·) , u = Ω ·Θ(·),

where K ∈ Rn×L, Ω ∈ Rm×L are weight matrices and the
basis functions are gathered in Θ ∈ RL. In general, given
a sufficiently rich set of basis functions {φi},{θi}, a set
of matrices {P,K,Ω} exists such that the approximations
presented above are valid within certain tolerance.

B. Optimization-based model search

Based on the previous assumptions, we propose to find
the approximated model using an optimization approach. It
consists in a feasibility problem where the decision variables
are the matrices {P,K,Ω}. Given sets of feasible trajectories,
x∗(t),u∗(t), and candidate basis functions, equations (5) and
(6) must hold and therefore they can be used as constraints.
The resulting feasibility problem is stated as follows,

find P,K,Ω

subject to x∗ = K ·Θ(y, ẏ, · · · ,y(q)) (7)

u∗ = Ω ·Θ(y, ẏ, · · · ,y(q))
y = P ·Φ(x∗,u∗, u̇∗, · · · ,u(p)∗).

If the feasibility problem provides a non-zero solu-
tion for the decision variables, it can be stated that
the system is locally differentially flat with flat output
y = P ·Φ(x,u, u̇, · · · ,u(p)) around x∗,u∗. Note that time de-
pendency has been dropped for notation simplicity.

There are different alternatives to translate the sample
trajectories into the constraints as well as to approximate
the derivatives of y and u. Both these issues are discussed
later in Section III-D.

C. Local Partial Differential Flatness

The same approach and assumptions can be used to prove
partial differential flatness on a given system. Using a slightly
modified notation, it is straightforward to approximate y, xr
and u,

y = Pr ·Φr(·) , xr = Kr ·Θ(·) , u = Ωr ·Θ(·),

where Φr ∈ RN is a vector of scalar basis functions of the
retrievable states, the inputs and a finite number of derivatives
of the latter. Pr ∈ Rm×N , Kr ∈ Rnr×L and Ωr ∈ Rm×L are
weight matrices.

Moreover, the states are assumed to be given by a set of n
2

chains of integrators of length two, i.e. x = [q q̇]T , where q

and q̇ are called positions and velocities respectively. Thus,
qur ∈ R

nur
2 groups the positions related to the unretrievable

states. Importantly, the partition between retrievable and
unretrievable states cannot break these chains. Therefore,

q̈ur =
[
h1(y, ẏ, · · · ,y(q)) · · · h nur

2
(y, ẏ, · · · ,y(q))

]T
,

where hi can be approximated as a linear combination of the
same basis functions defined in Θ, i.e.

q̈ur u
M

∑
i=1

γi ·θi(y, ẏ, · · · ,y(q)) (8)

where γi ∈R
nur
2 . This relation can also be expressed in matrix

form,
q̈ur = Γ ·Θ(·),

where Γ ∈ R
nur
2 ×L is a weighting matrix.

Following the approach presented in Section III-B, finding
the partially differentially flat model is written as a feasibility
problem where the constraints are built from a collection of
feasible trajectories.

find Pr,Ωr,Kr,Γ

subject to u∗ = Ωr ·Θ(y, ẏ, · · · ,y(q))
x∗r = Kr ·Θ(y, ẏ, · · · ,y(q)) (9)

q̈∗ur = Γ ·Θ(y, ẏ, · · · ,y(q))
y = Pr ·Φr(x∗r ,u

∗, u̇∗, · · · ,u(p)∗).

The partition of the states has to be determined beforehand
using different combinations of the chains of integrators for
the unretrievable and the retrievable states.

If the feasibility problem provides a non-zero solution for
the matrices Pr, Kr, Ωr, Γ it can be stated that the system
is locally partially differentially flat around the collection of
trajectories used to write the constraints.

D. Solving for Local (Partial) Differential Flatness

The method presented above requires to write the con-
straints in (7) and (9) using a set of sample trajectories.
The following approaches may be applied to complete the
formulation:

1) Discretization: Trajectories can be sampled in time.
Thus, each point of the discretized trajectory (xk,uk) provides
a set of constraints.

2) Parametrization: The sample trajectories can be fitted
into a parametric (e.g., polynomial) model of time, i.e.
x∗(t) = gD(t) , u∗(t) = fD(t). Choosing such parametric
models as basis functions (e.g, Φi = [xi] and Θi = [yi, ẏi]), the
equality constraints on the trajectories are guaranteed by the
equalities on the resulting coefficients. This parametrization
approach also provides the benefit of obtaining an analytical
expression for the derivatives of y and u.

Indeed, for the discretization approach, finite differences
can be used for numerical differentiation of y and u. How-
ever, for the special case where the basis functions Φ (Φr)

Fig. 1. Cart and Pole system. A force F is applied to the cart to move it
while balancing the pole.

are explicitly given by the (retrievable) states, and those in
Θ are explicitly given by the flat output and derivatives, the
sample trajectories u can be fitted into a parametric model
of time such that its analytical differentiation would provide
better derivatives. The same curve fitting can also be applied
to the (retrievable) states, since in this case linearity allows
to analytically obtain the derivatives of y (i.e. using Φ = x
implies ẏ = P · ẋ and so on).

The results presented in this paper were obtained using
the discretization approach. Moreover, since in our examples
the mentioned conditions on Φ (Φr) and Θ apply, time
polynomials of a certain degree were used to fit the sample
trajectories of u and x (xr), obtaining a better differentiation.

Finally, the feasibility problem can be solved using a non-
linear programming (NLP) solver. Solving such a numerical
program can be resource consuming. However, this process
is executed offline and the resulting numerical flat model can
be subsequently used for online trajectory generation.

IV. RESULTS

The numerical search for local partial differential flatness
was applied to three underactuated systems, i.e., “Cart-Pole”,
“Planar Ballbot” and a 3D quadrotor. Three feasible trajec-
tories were used to define the constraints of the optimization
problem for each system. The feasibility problems were
solved using IPOPT [11], a nonlinear programming solver
based on the Interior Point Method.

A. Cart-Pole

The Cart-Pole system is shown in Fig. 1. An inverted
pendulum is mounted on the top of the cart. Actuated wheels
allowing horizontal movement of the cart. M is the mass of
the cart, m is the mass of the ball at the extreme of the pole,
l is the distance between the cart-pole attachment point and
the ball. α is the angle between the pole and the vertical
line, p is the cart position coordinate on the plane, and F is
the horizontal force applied to the cart. The state vector is
defined as x =

[
p ṗ α α̇

]T .
This system has been analytically proven to be partially

differentially flat [1] with flat output α . The functions
connecting this flat output with the input and the states are
highly nonlinear although in this case they are not difficult

Fig. 2. Cart-Pole. Plot representing how the constraint on the retrievable
states (x∗r (t) = Kr ·Θ(·)) in the numerical search is satisfied. Here αoriginal
and α̇original correspond to the ones of the first given trajectory x∗r (t), while
α f lat and α̇ f lat are derived from the matrices product Kr ·Θ(·) (i.e. from
the numerical flat model).

Fig. 3. Ballbot from [3]. A torque τ is applied between the body and
the ball, making the system to lean. This allows the ball to move on the
horizontal plane while balancing the body.

to find, therefore this model is used here to validate the
numerical approach in a very simple and controlled example.

The unretrievable states have been chosen as xur =[
p ṗ

]T , the retrievable states as xr =
[
α α̇

]T , and the
basis functions vectors

Φr =
[
α α̇

]T
, Θ =

[
y ẏ ÿ

]T
.

After solving the feasibility problem the numerical flat
model is available. Fig. 2 shows the pole angle (α) and
angular velocity (α̇) comparing the original sample trajectory
with the one provided by the local flat model, i.e.,

xr = Kr ·

y
ẏ
ÿ

 , y = Pr ·
[

α

α̇

]
.

It can be seen that the model is accurate and that it
reproduces the dynamics of the system correctly.

B. Planar Ballbot

The Planar Ballbot is shown in Fig. 3. It can be seen as
a particular form of an inverted pendulum, and it can be
modeled as a rigid rectangle mounted on a circular wheel.
An input torque is applied between the body and the ball,

Fig. 4. Ballbot. Input τ and acceleration α̈ trajectories. Verification of the
constraints u∗(t) = Ωr ·Θ(·), q̈∗ur(t) = Γ ·Θ(·). Here τoriginal and α̈original
correspond to the original trajectories, while τ f lat and α̈ f lat correspond
to Ωr ·Θ(·) and Γ ·Θ(·) respectively (i.e. derived from the numerical flat
model).

Fig. 5. Quadrotor schematics from [14]. The four inputs, given by the
torques about each axis and the total trust in the z direction, make the
quadrotor to move in the 3D space.

making the robot to lean. This causes the ball to move, rolling
on the horizontal plane. mball is the mass of the ball, r is the
radius of the ball, Iball is the moment of inertia of the ball,
α is the angle travelled by the ball on the horizontal plane,
mbody is the mass of the body, Ibody is the moment of inertia
of the body, β is the lean angle and τ is the input torque.
The state vector can be defined as x =

[
α α̇ β β̇

]T
.

The unretrievable states have been chosen as xur =[
α α̇

]T , the retrievable states as xr =
[
β β̇

]T
and the

basis functions vectors

Φr =
[
β β̇

]T
, Θ =

[
y ẏ ÿ

]T
.

It is important to remember that the (partial) differential
flat model also allows to reconstruct the input as function
of the flat outputs and derivatives. In Fig. 4 we show how
the input torque τ is computed using the model and the
corresponding outputs for a sample trajectory. Moreover the
original and derived angular acceleration α̈ are also shown.

C. Quadrotor

The Quadrotor model used for this paper is the one
derived in [12]. px, py and pz are the coordinates of
the system in the space, α , β and δ are the Euler an-
gles that represents the 3D roll, pitch and yaw rotations.
m is the mass of the quadrotor, τα , τβ and τδ are the
input torques about each axis. Fz is the total trust in
the z direction. The state vector can be defined as x =

Fig. 6. Quadrotor. Plot representing how the constraints on δ and px in
the numerical search are satisfied. Here δoriginal and px,original correspond
to the ones of the first given trajectory, while δ f lat and px, f lat are derived
from the numerical flat model).

[
px py pz α β δ ṗx ṗy ṗz α̇ β̇ δ̇

]T
, and

the input vector as u =
[
Fz τα τβ τδ

]
.

The quadrotor has been proven to be differentially flat
[13], [14] with analytical flat output y =

[
px py pz δ

]T .
In this paper we test the method to derive the local differen-
tial flatness on a larger system (12 states).

The basis functions vectors have been chosen as,

Φ =
[
px py pz δ

]T
, Θ =

[
y ẏ ÿ y(3) y(4)

]T
.

In this case the numerical search has also produced a
differentially flat model. Fig. 6 shows the angle δ and
the position coordinate px given by one of the feasible
trajectories as well as the ones provided by the numerical
flat model.

D. Re-planning Tasks

In this section we show the use of the numerical flat
models obtained above in a re-planning task. These simu-
lation results were obtained using a standard laptop com-
puter with 2.2Ghz Intel Core i7 (quad core) processor with
8GB 1600Mhz DDR3 RAM. The re-planning optimization
problems have also been solved using IPOPT [11].

The re-planning task consists in using the local (partial)
differential flat model to plan a new trajectory at certain time
during the execution of one of the original trajectories. The
time at which the re-planning occurs is denoted as trp.

In practice in our simulation environment we integrate
forward the equation of motion following the original trajec-
tory together with a stabilizer controller. At t = trp we stop
the simulation and use the flat model for re-planning, we
then continue the simulation given the new state and control
trajectories. We measure the time required for re-planning
and it is being reported in Table I.

1) Cart-pole: The re-planning task implemented in the
cart-pole corresponds to an ‘emergency stop’ behavior. The
original trajectory starts at p = 0 and ends at p = 12m and
it has a duration of 8s. The trajectory ends in a up-right
equilibrium state of the pendulum. At t = trp an emergency
stop is required, and an optimization problem is solved in

Fig. 7. Cart-pole. Comparison of the input τ in the original trajectory and
in the one including the emergency brake asked at trp (indicated by the red
diamond). The system aggressively try to stop as soon as possible, and it
does it in 1s (at the time indicated by the blue cross)..

Fig. 8. Ballbot. Comparison of the ball angle α in the original trajectory
and in the one including the emergency brake asked at trp (indicated by the
red diamond). The system manages to stop in 1s (at the time indicated by
the blue cross) in an earlier position than the original trajectory.

order to take the system to the up-right equilibrium position
in minimum time. The resulting input trajectory is shown in
Fig. 7, together with the original input trajectory. The com-
plete resulting behavior is shown in the video accompanying
this paper. It can be seen how in the re-planned trajectory
a big effort is made by the system in order to stop at an
equilibrium state as soon as possible.

2) Planar ballbot: A similar emergency stop behavior is
requested for the planar ballbot. Fig.8 shows the original
trajectory with a duration of 8s. The re-planned trajectory
takes the system to the upright stable position at t = trp+1s.
The complete behavior is also shown in the attached video.

3) Quadrotor: Here we present a detour behavior as
re-planning task. The original trajectory for the quadrotor
consists in a go-to task from the initial position (0,0,0) to
a still position at (5,0,0) in 8s. At a trp the robot is asked
to change the final destination to a new set of coordinates
(5,2,0) in the minimum time. As shown in Fig. 9, the new
task is fullfilled in t = 4.47s. Simulation of the re-planning
task is shown in the multimedia material related to this paper.

Table I summarizes the time required for solving the nu-
merical search and the consequent re-planning experiments

Fig. 9. Quadrotor. Comparison between the original trajectory (in red),
and the trajectory including the replanning (in blue) in the 3D space. The
starting point is indicated by the circle, while the ending points are indicated
by the two crosses. The diamond shows the instant on which the replanning
is made.

TABLE I
TIME CONSUMPTION SUMMARY

System Numerical search Replanning
Cart-Pole 68.89s 0.02s

Planar Ballbot 20.86s 0.03s
Quadrotor 16min 45s 0.5s

for the three systems. These results demonstrate that it is
possible to perform online planning using the local (partial)
differential flatness model derived in this paper. As expected,
the numerical search requires more time (especially on the
quadrotor) to be solved. Moreover, it is important to remark
the numerical search results are strongly dependent on the
given trajectories.

All the trajectories shown above have been simulated
through the forward integration of (1). A Time-Varying
Linear Quadratic Regulator [10] (TVLQR) has been used
as stabilizer. The results of these simulations are shown in
the video.

V. DISCUSSION

A key benefit of the numerical search is the simplification
in the derivation of the flat model avoiding the manipulation
of the equations of motion. The use of basis function to
approximate the flat model simplifies the formulation in the
parameters space. Such parametrization makes the optimiza-
tion time smaller in an online re-planning task.

On the other hand, this method requires partitioning the
states beforehand. This is a design decision and it can be
guided by the knowledge of the dynamics of the system.
However results in [1] introduces a lemma that, providing
sufficient conditions for partial differential flatness, proves
how to partition the states when certain conditions on some
of the actuated states are verified.

Another critical aspect of the approach is the dependency
on sets of feasible trajectories and sufficiently rich basis
functions. Trajectories can be generated using methods that
are more time expensive, like standard numerical optimiza-
tion approaches [17], [18]. Regarding the selection of an

effective set of basis functions, knowledge of the dynamics
of the system can be exploited, focusing initial guesses on
simple functions. In the examples provided in this paper
a very simple vector of basis functions has been used,
simplifying the implementation. However, the method is still
very sensible to this choice.

For the case of the quadrotor, the trajectories used for
obtaining the model do not include the highly nonlinear
take-off and landing regimes as it requires much more
elaborated basis functions. However, using the local model
demonstrated to be effective for feasible solutions in the
re-planing stage. In the same example the re-planning time
shown in Table I is greater than the first two examples, but
it is important to recognize that the implementation has not
been optimized for reducing convergence time.

Regarding further extensions, providing feasible trajecto-
ries spanning a wider part of the dynamics and a richer
set of basis functions, together with a proper method to
select them, would result in more consistent approximations,
making this approach even more general. Moreover, a more
efficient implementation would further reduce convergence
time for the optimization problems.

VI. CONCLUSION

We have introduced a numerical method in order to find
an approximated (partially) differentially flat model given
some feasible inputs and states trajectories. The method has
been successfully proven on three underactuated examples,
where the system dynamics has been correctly approximated.
Moreover, the new models have been used in online re-
planning tasks, resulting in trajectories that have been shown
to be stabilizable simulating the original equations of motion.

REFERENCES

[1] S. Ramasamy, G. Wu, and K. Sreenath, Dynamically feasible motion
planning through partial differential flatness. In Robotics: Science and
Systems Conference (RSS), 2014.

[2] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[3] M. Shomin and R. Hollis, Differentially flat trajectory generation for

a dynamically stable mobile robot. In IEEE Internation Conference on
Robotics and Automation (ICRA), 2013.

[4] H. Sira-Ramirez and S. K. Agrawal, Differentially flat systems. CRC
Press, 2004.

[5] J. Lvine and D. V. Nguyen, Flat output characterization for linear
systems using polynomial matrices. Systems & control letters, 2003.

[6] G. G. Rigatos, Nonlinear Control and Filtering Using Differential
Flatness Approaches: Applications to Electromechanical Systems.
Springer, 2015.

[7] R. M. Murray, M. Rathinam and W. Sluis, Differential Flatness
of Mechanical Control Systems: A Catalog of Prototype Systems.
Proceedings of the 1995 ASME International Congress and Exposition,
1995.

[8] T. Dear, S. D. Kelly, M. Travers and H. Choset, Motion Planning
and Differential Flatness of Mechanical Systems on Principal Bundles.
ASME 2015 Dynamic Systems and Control Conference, 2015.

[9] C. P. Tang, P. T. Miller, V. N. Krovi, J. C. Ryu, and S. K. Agrawal,
Differential-Flatness-Based Planning and Control of a Wheeled Mobile
Manipulator: Theory and Experiment. IEEE/ASME Transactions on
Mechatronics, 2011.

[10] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, Lqr-
trees: Feedback motion planning via sums-of-squares verification.
International Journal of Robotics Research, 2010.

[11] A. Wachter and L.T. Biegler, On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming. Mathematical Programming, 2006.

[12] A. Di Cesare, K. Gustafson, and P. Lindenfeler, Design Optimiza-
tion of a Quad-Rotor Capable of Autonomous Flight. BS Report,
Aerospace and Mechanical Dept., Worchester Polytechnic Institute,
Worchester, MA, 2009.

[13] S. Formentin and M. Lovera, Flatness-based control of a quadrotor
helicopter via feedforward linearization. IEEE Conference on Decision
and Control and European Control Conference (CDC-ECC), 2011.

[14] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke, A
Prototype of an Autonomous Controller for a Quadrotor UAV. Control
Conference (ECC), 2007.

[15] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, Whole-body model-predictive control applied
to the hrp-2 humanoid robot. IEEE-RSJ Int. Conference on Intelligent
Robots and Systmes (IROS) , 2015.

[16] Michael Posa, Cecilia Cantu, and Russ Tedrake, A direct method for
trajectory optimization of rigid bodies through contact. International
Journal of Robotics Research, 2014.

[17] D. Pardo, L. Moller, M. Neunert, A. Winkler, and J. Buchli, Evaluating
direct transcription and nonlinear optimization methods for robot
motion planning. IEEE Robotics and Automation Letters, 2016.

[18] John T. Betts, Survey of Numerical Methods for Trajectory Optimiza-
tion. Journal of Guidance, Control and Dynamics, 1998.

[19] A. Banos, F. Lamnabhi-Lagarrigue, F. J. Montoya. Advances in the
Control of Nonlinear Systems. Springer, 2001.

