APPENDIX
A. Properties of Bézier curves

A Bézier curve b : [0,1] — R of degree n; is defined as
a linear combination of Bernstein polynomials, [26, p. 144],

ny
b(t) := > BrBin, (1), (28)
k=0
where By, ,,, K = 0,1,...,n, are the Bernstein polynomials
of degree ny, and the coefficients 5y, 51, . .., Bp, are referred

to as control points.

1) Convex hull property: The convex hull property of
Bézier curves provides constraint fulfillment guarantees by
checking the constraint only at its control points. The fact
that the Bernstein polynomials form a partition of unity
implies

(t,b(t)) € conv({(k/np, Br), k =0,...,np}), (29)

for all ¢ € [0, 1], [26, p. 146].

2) Refinement: Using de Casteljau’s algorithm, [26,
p. 151], the Bézier curve b, defined on the interval [0, 1], can
be efficiently split into two Bézier curves of the same degree,
defined over the intervals [0, o] and [o, 1] with 0 < v < 1.

3) Multiplication: Consider the Bézier curves b and ¢ of
degree ny; respectively n., with the coefficients ) respec-
tively 7x. The coefficients oy, of the Bézier curve a(t) =
b(t)c(t), t € |0,1] of degree ny, + n. are then given by

min(ne,?) ne) ((mb
W) sy oo

o =
j=max(0,i—ny) ( ? )

4) Approximation of a convex function: In addition, the
following result will be used.

Proposition 6.1: (from [32]) Let f : [0,1] — R be an
arbitrary continuous convex function. For any integer n, > 0
it holds that

ny
> F(k/n) Bin, (1) > f(1) (3D
k=0

for all ¢ € [0,1]. Equality holds in the limit as n, — oo

(uniformly in ¢ € [0, 1]).
Proof: See [32, p. 255, p. 259]. [ ]
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