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Abstract— This article discusses the implementation of an
infinite-horizon model predictive control approach that is based
on representing input and state trajectories by a linear com-
bination of basis functions. An iterative constraint sampling
strategy is presented for guaranteeing constraint satisfaction
over all times. It will be shown that the proposed method
converges. In addition, we will discuss the implementation of
the resulting (online) model predictive control algorithm on
an unmanned aerial vehicle and provide experimental results.
The computational efficiency of the algorithm is highlighted by
the fact that a sampling rate of 100 Hz was achieved on an
embedded platform.

I. INTRODUCTION

Model predictive control (MPC) is one of few control

strategies that take a system’s model including input and

state constraints explicitly into account. At each time step,

an optimal control problem is solved, and the first part

of the resulting input is applied to the system. By doing

so, an implicit feedback law is obtained that yields ro-

bustness against modeling uncertainties and disturbances.

Consequently, MPC is a well-established control strategy and

has been successfully applied in industry, see for example

[1], [2], [3], and [4].

Although the computational resources available in embed-

ded systems has increased in the past years, computation still

represents a bottleneck when applying online MPC, where

the aforementioned optimal control problem is solved online,

for controlling systems with relatively fast dynamics and a

large number of states and inputs. A widely used approach

to render MPC computationally tractable is to discretize

the dynamics and truncate the time horizon, resulting in a

trade-off between computational complexity and prediction

horizon. However, truncating the prediction horizon leads

necessarily to issues with closed-loop stability and recursive

feasibility, [5]. We therefore propose an alternative approach.

As suggested in [6], we represent input and state trajectories

as a linear combination of basis functions, thereby avoiding

the truncation of the time horizon. As a result, we obtain

straightforward stability and recursive feasibility guarantees

that are inherent to the predictive control formulation. The

trade-off is now shifted from computational complexity ver-

sus prediction horizon to computational complexity versus

the number of basis functions used to describe input and

state trajectories. It is conjectured that already few basis

functions provide a relatively good approximation to the
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underlying optimal control problem, leading to a compact

problem formulation (with few variables) that can be solved

efficiently. The conjecture is supported by the results from

[7], where a variant of the proposed MPC approach was

successfully implemented on resource-constrained hardware

(sampling time: 50 Hz, processor: STM32F4 with 168 MHz).

A major difficulty of the proposed approach is to enforce

input and state constraints over an infinite time horizon. In

previous work, [7], constraint sampling, that is, enforcing

input and state constraints only at certain time instants, was

shown to work reliably in practice, although the recursive

feasibility and closed-loop stability guarantees may be lost.

In the following, we will tackle this problem, and present an

iterative strategy guaranteeing constraint satisfaction over an

infinite time horizon for a certain class of basis functions. We

will show convergence of the proposed strategy. In addition,

we will discuss a method for efficiently checking constraint

satisfaction by exploiting the convex-hull property of Bézier

curves (to be made precise in the following). The proposed

MPC algorithm is applied for controlling an unmanned aerial

vehicle (UAV) that is modeled using 12 states and 9 inputs.

The computational efficiency of the approach is highlighted

by the fact that the control algorithm runs at 100Hz.

Related work: An overview about the discrete-time finite-

horizon MPC approach can be found in [8]. In [9], a

continuous-time MPC formulation is presented that relies

on a parametrization of input trajectories using Laguerre

functions. Unlike the approach presented in [6], the finite

prediction horizon is retained, and consequently, closed-loop

stability and recursive feasibility need to be imposed using

a combination of terminal state constraints and terminal

cost (similar to the discrete-time approach). Input and state

constraints are only enforced at certain time instances and

as a result, constraint satisfaction is not guaranteed for all

times.

MPC has been successfully applied to various types of

UAVs. For example, in [10] and [11], a nonlinear receding

horizon control approach is presented, and used to stabilize a

vehicle powered by a ducted fan. The authors of [12] propose

to parametrize input trajectories using polynomials in order

to solve a nonlinear optimal control problem. The resulting

predictive control algorithm is shown to work reliably by

presenting simulations of a parafoil and a glider. Other

applications include [13], where a nonlinear MPC scheme

is applied to the control of autonomous helicopters, and

[14], where a nonlinear MPC approach is used to stabilize a

ducted-fan UAV.

The problem of imposing semi-infinite constraints (in our

2017 IEEE International Conference on Robotics and Automation (ICRA)
Singapore, May 29 - June 3, 2017

978-1-5090-4633-1/17/$31.00 ©2017 IEEE 2723



case due to the fact that we require input and state constraints

to be fulfilled for all times) has been extensively studied in

the literature. For instance in the context of robust optimiza-

tion, the authors of [15] and [16] propose to use a stochastic

constraint sampling approach. They provide bounds on the

probability that constraint violations occur, when solving the

problem with sampled constraints. Alternative approaches

include relaxation techniques, [17], that might even be exact,

see for instance also [18]. Similar relaxation techniques

are applied in [19] to tackle continuous linear programs.

Practical applications include [20], where sums-of-squares

programming was applied for planning collision-free UAV

trajectories, and [21], where semi-infinite constraints arising

in motion planning for humanoid robots were approximated

in terms of B-spline control points. Moreover, in [22], a

recursive strategy based on cubic Hermite splines is pro-

posed for generating trajectories on manifolds (leading to

a semi-infinite equality constraint), as encountered in robot

locomotion and object manipulation.

In contrast to earlier work, we retain the infinite prediction

horizon by parametrizing input and state trajectories with

basis functions. In order to ensure constraint satisfaction over

all times, we propose an iterative approach that is shown

to converge. As a consequence, closed-loop stability and

recursive feasibility are guaranteed, see [6]. Unlike stochastic

constraint sampling strategies, our approach is deterministic,

and leads to a sequence of quadratic programs that are

to be solved. As such, it does not require the solution of

semidefinite programs that typically arise with relaxation

techniques, and that are often harder to solve.

The proposed model predictive control approach is applied

to the control of an UAV1, where good disturbance-rejection

properties can be observed in practice.

Outline: The parametrized MPC formulation is introduced

in Sec. II. Sec. III presents an iterative constraint sampling

procedure ensuring constraint satisfaction over all times. It

is shown that the algorithm converges. Sec. IV illustrates

an efficient algorithm for checking constraint satisfaction.

Experimental results are presented in Sec. V and the article

concludes with remarks in Sec. VI.

II. PROBLEM FORMULATION

We seek to approximate the following constrained infinite-

horizon optimal control problem

inf
1

2

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t) dt s.t. (1)

ẋ(t) = Ax(t) +Bu(t),

ll ≤ C(x(t), u(t)) ≤ lu, ∀t ∈ [0,∞),

x(0) = x0, x ∈ L2
n, u ∈ L2

m,

where x denotes the state trajectory, u the input trajectory,

L2
n and L2

m refer to the set of square integrable functions

mapping from [0,∞) to R
n, respectively R

m, A ∈ R
n×n,

B ∈ R
n×m describe the system dynamics, x0 refers to the

initial condition, and C ∈ R
nc×(n+m), ll ∈ R

nc , and lu ∈
1See https://youtu.be/NYY9q-vs4Nw.

R
nc describe the linear constraints. The above inequalities

have to be understood component wise, and it is assumed

that ll ≤ 0 and lu ≥ 0. The integers n, m, and nc refer to the

number of states, inputs, and constraints, whereas the positive

definite matrices Q ∈ R
n×n and R ∈ R

m×m describe the

running cost. Throughout the article we denote vectors as n-

tuples with dimension and stacking clear from the context,

for example (x(t), u(t)) ∈ R
n+m.

Unlike the “standard” MPC approach, which is based on

discretizing the dynamics and truncating the time horizon,

input and state trajectories are represented as a linear com-

bination of basis functions. In the following, we choose the

basis functions to be spanned by exponentially decaying

polynomials. By means of the Gram-Schmidt process we

choose the basis functions to be orthonormal with respect to

the L2-scalar product over the interval [0,∞), which leads

to

τi(t) :=
√
2λLi−1(2λt)e

−λt, (2)

i = 1, 2, . . . , s, where the constant λ > 0 refers to the expo-

nential decay and Li denotes the ith Laguerre polynomial,

[23, p. 775]. It can be shown that the basis functions fulfill

the following identity

τ̇(t) = Mλτ(t), ∀t ∈ [0,∞), (3)

which will be used in the following. The vector τ contains

the elements τi, i = 1, 2, . . . , s, and the matrix Mλ ∈ R
s×s

is defined as

Mλ :=

⎛
⎜⎜⎜⎝

−λ 0 0 . . .
−2λ −λ 0 . . .
−2λ −2λ −λ . . .

...
...

...
. . .

⎞
⎟⎟⎟⎠ . (4)

Thus, we represent input and state trajectories as

x̃(t) := (In ⊗ τ(t))Tηx, ũ(t) := (Im ⊗ τ(t))Tηu, (5)

where ⊗ denotes the Kronecker product and Iq ∈ R
q×q the

identity matrix (for any integer q > 0). The vectors ηx ∈ R
ns

and ηu ∈ R
ms are the parameter vectors that are to be

determined by the optimization.

According to [6], the optimal control problem (1) can be

approximated by

J := inf
1

2
ηTzHηz s.t (6a)

Aηz = Dx0, (6b)

ll ≤ (C ⊗ τ(t))Tηz ≤ lu, ∀t ∈ [0,∞), (6c)

where the vector ηz ∈ R
s(n+m) contains the parameter

vectors ηx and ηu, ηz := (ηx, ηu), and the matrices A, H ,

and D are given by

H := diag(Q⊗ In, R⊗ Im), D :=

(
0ns×n

In

)
, (7)

A :=

(
In ⊗MT

λ −A⊗ Is −B ⊗ Is
In ⊗ τ(0)T 0

)
. (8)

As pointed out in [6], the constraint (6b) enforces the

dynamics exactly, that is, given parameter vectors ηx and
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ηu fulfilling (6b), the corresponding trajectories x̃ and ũ
fulfill the equations of motion exactly. Likewise, (6c) is

equivalent to an exact fulfillment of the constraints, i.e.

ll ≤ C(x̃(t), ũ(t)) ≤ lu for all times t ∈ [0,∞), and

therefore, trajectories satisfying (6b) and (6c) are feasible

candidates for (1). As a result, the optimizer of (6) (if it

exists) achieves the cost J on the real system, which is

an upper bound on the optimal cost in (1). The constraints

(6b) and (6c) describe a closed convex set in the parameter

space ηz , and consequently, the optimization (6) is convex.

Provided that a feasible ηz exists, the infimum is attained

and the corresponding optimizer is unique due to the strong

convexity of the Hessian H .

However, the constraint (6c) is not polyhedral, and there-

fore, (6) cannot be solved by standard optimization routines

(like quadratic programming solvers). We propose to solve

the optimization (up to a desired tolerance) by sampling the

constraint (6c) in an iterative manner. At each iteration, we

will check whether the current optimizer fulfills (6c) and

refine the constraint sampling points if needed. We will show

in the remainder that the satisfaction of (6c) can be checked

efficiently, which, when combined with warm starts, leads to

an efficient procedure for solving (6).

III. AN ITERATIVE CONSTRAINT SAMPLING PROCEDURE

When imposing the inequality constraints (6c) only at a

fixed and finite number of time instances ti, i = 1, 2, . . . , N ,

the optimization (6) reduces to the quadratic program

J(I) := inf
1

2
ηTzHηz s.t. (9a)

Aηz = Dx0 (9b)

ll ≤ (C ⊗ τ(t))Tηz ≤ lu, ∀t ∈ I, (9c)

where I := {t1, t2, . . . , tN}. We propose to solve (6) in an

iterative manner as summarized in Alg. 1. The algorithm

solves (9) for a given I; if the solution ηz satisfies (6c)2

then ηz is likewise the optimizer of (6) and the algorithm

terminates. If not, at least one time instant at which the

constraint is violated, is added to the set I . The time

instants at which the constraint (6c) was not active, that

is, their corresponding Lagrange multipliers were 0, are

removed from the set I , and (9) is solved again. Removing

these inactive time instants ensures that a finite number of

constraint sampling points is used.

The following observation can be made: A function

[0,∞)→ R of the type τ(t)Tη, where η are constant coeffi-

cients, can have at most s−1 stationary points, since the basis

functions consist of exponentially decaying polynomials of

order of s − 1 or smaller. As a result, the optimization (6)

will have at most (s − 1)nc active inequality constraints.

If we knew the corresponding time instances (at which

the inequality constraints are active) in advance, we could

impose the constraint (6c) only at those instances, and would

thereby not change the optimal solution, nor the optimal cost.

2The problem of checking whether ηz fulfills (6c) is discussed in Sec. IV.

Algorithm 1 Iterative constraint sampling

Initialize: initial guess for the constraint sampling points:

I0 = {t1, t2, . . . , tN}; maximum number of iterations:

MAXITER;

1: k = 0
2: for k <MAXITER do
3: solve (9) for Ik → ηkz
4: if infeasible then
5: abort

6: else if ηkz fulfills (6c) then
7: algorithm converged

8: return ηkz
9: end if

10: find at least one constraint violation instant → tc
11: remove inactive time instants in Ik → Īk
12: Ik+1 = Īk ∪ {tc}, k = k + 1
13: end for

In other words, if the collection of these active time instances

is denoted by I∗, it follows that J(I∗) = J .

In addition, a similar argument can be used to conclude

that the optimization (9) can have at most 2(s− 1)nc active

constraints. Thus, the index set I is guaranteed not to exceed

a size of at most 2(s − 1)nc + 1 elements (we may add

one additional constraint violation instant in Alg. 1). This is

because, if all the stationary points of (6c) (stationary with

respect to t in a row-wise sense) violate the constraint (6c),

there are at most 2(s−1) intersections with the corresponding

lower and upper bounds, which limits the maximum number

of active constraints to 2(s− 1)nc.

As we will show in the following, the algorithm is

guaranteed to converge. Hence, the sets Ik are approximating

the set I∗ better and better as k increases.

Proposition 3.1: Provided that (6) is feasible, the se-

quence of optimizers ηkz in Algorithm 1 converges to the

optimizer of (6). Similarly, the cost J(Ik) converges to J
for k →∞.

Proof: By assumption, the cost J is finite and the

corresponding optimizer ηz is unique. From the fact that the

optimizer ηz is a feasible candidate to the optimization with

cost J(Ik) (where the constraint (6c) is only imposed at the

constraint sampling instances contained in Ik) it follows that

J(Ik) ≤ J , that the infimum in (9) is attained, and that the

corresponding minimizer ηkz is unique for all k.

We define the set Īk as the set of the active constraints

contained in Ik. When removing the inactive constraints, the

optimizer and the cost remain unchanged, and thus it holds

that J(Īk) = J(Ik).
We claim that J(Ik+1) > J(Ik) = J(Īk) (provided

that J(Ik) �= J). Proof by contradiction: If J(Ik+1) <
J(Ik) this would imply that the optimizer ηk+1

z with cost

J(Ik+1), which is a feasible candidate for the optimization

with cost J(Īk) = J(Ik), achieves a lower cost, leading

to a contradiction. If J(Ik+1) = J(Ik) this implies by the

same argument and the uniqueness of the optimizer ηkz , that

ηkz = ηk+1
z . However, ηkz violates the constraints at least at
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one time instant for which no violation occurs with ηk+1
z ,

leading again to a contradiction.

Thus, J(Ik) is a strictly increasing sequence, bounded

above by J , and therefore converges. It remains to show that

J(Ik) converges to J and that the sequence ηkz converges to

ηz . Due to the strong convexity of the objective function, the

two-norm |ηkz − ηk−1
z |22 can be bounded by a constant times

J(Ik)− J(Ik−1). This is because ηkz is a feasible candidate

to the optimization corresponding to the cost J(Īk−1) =
J(Ik−1) and so is 1/2(ηkz + ηk−1

z ). However, the feasible

candidate 1/2(ηkz+ηk−1
z ) attains certainly a cost greater than

J(Īk−1) = J(Ik−1), leading to

J(Ik−1) ≤ 1

8
(ηkz + ηk−1

z )TH(ηkz + ηk−1
z ). (10)

From the strong convexity of the objective function it can be

concluded that

J(Ik−1) ≤ 1

2
(J(Ik) + J(Ik−1))− σ

8
|ηkz − ηk−1

z |22, (11)

where σ corresponds to smallest eigenvalue of H . This

implies

|ηkz − ηk−1
z |22 ≤ 4σ−1(J(Ik)− J(Ik−1)), (12)

and therefore the sequence ηkz converges. As a result,

limk→∞ ηkz exists and is guaranteed to fulfill the constraints.

It is therefore a feasible candidate for (6), implying that

limk→∞ J(Ik) ≥ J , which, combined with J(Ik) ≤ J ,

leads to limk→∞ J(Ik) = J . Thus, limk→∞ ηkz is in fact

the optimizer of (6) and by uniqueness, it follows that

limk→∞ ηkz = ηz .

In practice, the optimization (9) in Alg. 1 can be warm-

started with the optimizer ηkz of the previous step, and

can therefore be solved efficiently. Moreover, the solution

tolerance can be successively increased over the iterations in

the hope that the constraint sampling instances I∗ are well-

approximated by Ik within the first few iterations.

It remains to discuss an efficient implementation for

checking whether the constraint (6c) is violated for a given

parameter vector ηz and retrieving at least one corresponding

constraint violation instant.

IV. A RECURSIVE STRATEGY FOR CHECKING

CONSTRAINT SATISFACTION

This section illustrates a strategy for checking the satis-

faction of the constraint (6c).

The basis functions are spanned by exponentially decaying

polynomials. For polynomials of degree s − 1 ≤ 4, there

are closed-form expressions for the stationary points of the

mapping

t→ (C ⊗ τ(t))Tηz, (13)

as a function of the parameter vector ηz (the exponential

decay does not affect the stationary points). Consequently,

one could check whether the constraint (6c) is satisfied by

evaluating (13) at its stationary points. Although such an

approach tends to be very efficient, it does not generalize

to polynomials of higher order, and therefore, we will focus

on an alternative strategy. We will need the following two

ingredients:

1) Due to the exponential decay of the basis functions

it can be concluded that it is enough to check the

constraint (6c) over a finite time interval;

2) The trajectories in (13) are approximated by Bézier

curves to enable quick but conservative constraint sat-

isfaction checks. If the check is not conclusive, the

approximation of (13) is refined, and the check is

repeated.

Both elements, the reduction of (6c) to a finite time interval

and the approximation of (13) by Bézier curves, are dis-

cussed below.

A. Reduction to a finite time interval

According to [24, p. 280] exponentially decaying polyno-

mials have the following property

sup
t∈[0,∞)

|ps(t)e−t/2| = max
t∈[0,4(s−1)]

|ps(t)e−t/2|, (14)

which holds for any polynomial ps : [0,∞)→ R that has a

maximum degree of s− 1. By means of an appropriate time

scaling the above relation can be used to conclude

sup
t∈[0,∞)

|(C ⊗ τ(t))Tηz| = max
t∈[0,2(s−1)/λ]

|(C ⊗ τ(t))Tηz|
(15)

for any parameter vector ηz , where the absolute value | · |
and the supremum are applied component wise. Hence, it is

enough to check the constraint (6c) over the compact interval

[0, 2(s− 1)/λ] instead of the unbounded interval [0,∞).

B. An iterative procedure for checking the constaints

In the following, we will construct upper and lower bounds

on (13) using Bézier curves.3 We will then exploit the

convex hull property of Bézier curves to come up with an

efficient, but conservative test for checking (6c). If the test

is not decisive, the approximation of (13) is refined using de

Casteljau’s algorithm, [26, p. 151]. The procedure is repeated

until a decisive answer is obtained.

In order to construct upper and lower bounds on (13) we

will approximate the exponential and polynomial parts of the

basis functions separately. Furthermore, time is re-scaled for

mapping the interval [0, 2(s− 1)/λ] to [0, 1] (Bézier curves

are commonly defined on [0, 1]). As a consequence, (6c) is

restated as

ll ≤
(
C ⊗ τ̂

(
2(s− 1)t

λ

))T

ηz e−2(s−1)t ≤ lu, (16)

for all t ∈ [0, 1], where the basis functions τ are divided

into the polynomial part, denoted by τ̂ , and the exponential

decay. The polynomial part is rewritten as a Bézier curve of

degree s− 1, that is,(
C ⊗ τ̂

(
2(s− 1)t

λ

))T

ηz =

s−1∑
k=0

βk(ηz)Bk,s−1(t), (17)

3For the sake of completeness the key properties of Bézier curves are
summarized in the online appendix [25].
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for all t ∈ [0, 1], where βk(ηz) ∈ R
nc are the control

points and Bk,s−1 are the Bernstein polynomials of order

s − 1, [26, p. 144], k = 0, 1, . . . , s − 1. The control points

are linearly dependent on the parameter vector ηz , and are

therefore determined by multiplying ηz with a sparse matrix

that can be computed offline (see for example [26, Ch. 7.3]

for a conversion from Bernstein to monomial form).

According to [25, Prop. 6.1], the exponential decay can

be approximated over the time interval [0, 1] as

e−2(s−1)t ≈
ne∑
k=0

e−2k(s−1)/neBk,ne
(t), (18)

where ne is a fixed positive integer, typically greater or

equal to s− 1, that controls the approximation quality. The

above approximation extends naturally to the case where the

exponential decay is approximated over a compact subset

of [0, 1], which will become important in a later stage. By

multiplying the two Bézier curves, that is, (17) and (18), the

constraint (16) is approximated as

ll ≤
s−1+ne∑

k=0

γk(ηz)Bk,s−1+ne
(t) ≤ lu, ∀t ∈ [0, 1]. (19)

Combining the fact that the exponential decay is a convex

function in t with [25, Prop. 6.1] guarantees that the Bézier

curve (18) is an upper bound on the exponential decay, and

as a consequence, (19) implies (16) (but certainly not vice

versa). In fact, the approximation (19) is exact at the points

t = 0 and t = 1. The control points γk(ηz) ∈ R
nc that

parametrize the Bézier curve in (19) are linearly dependent

on ηz , and can therefore be computed easily. An explicit

formula for calculating the product of two Bézier curves can

be found in the appendix. The convex hull property of Bézier

curves enables efficient checks for deciding whether (6c) is

fulfilled. More precisely, if

ll ≤ γk(ηz) ≤ lu, k = 0, 1, . . . , s− 1 + ne, (20)

holds, it can be concluded that (6c) is satisfied. If the

above condition is violated for all control points γk, it can

be concluded that (6c) is certainly not satisfied. The same

conclusion can be drawn, if the above constraint is violated

by γ0 or γs−1+ne
, as these two control points are guaranteed

to lie on the trajectory. Hence, γ0, respectively γs−1+ne

would then yield potential constraint violation instants. If

the check is not decisive, the approximation of (16) by the

Bézier curve (19) is refined by splitting the interval [0, 1] into

two parts (that may have different lengths). De Casteljau’s

algorithm is used for calculating the two Bézier curves

corresponding to the polynomial part in (16). Likewise, the

approximation of the exponential decay is refined, in order

to obtain conditions similar to (19) for the two sub intervals

of [0, 1]. This refinement step is repeated until a decisive

answer is found. The approach is summarized by the flow

chart shown in Fig. 1.

express τ̂ as Bézier curve

approximate
exponential decay;

multiplication with βk

check (20)

refine βk by splitting the
time interval into two parts

constraint satisfied
or violated

βk

γk

not conclusive

βk

conclusive

Fig. 1. The flow chart illustrates the iterative procedure for checking (6c).

C. Numerical example

The proposed approach is illustrated on a numerical ex-

ample as shown in Fig. 2. It is checked whether the curve

f : [0,∞) → R, consisting of a linear combination of the

first 5 basis functions, satisfies the constraint −1.8 ≤ f(t) ≤
8 for all times t ∈ [0,∞). After rescaling time, the check

can be reduced to the interval [0, 1], see (16). The top figure

shows the original curve f in black and its approximation

by a Bézier curve (in blue) according to (19). Indeed,

the Bézier curve represents an upper bound, whenever f
is positive, and a lower bound, whenever f is negative.

The corresponding control points γk, k = 0, 1, . . . , 9, are

indicated by the blue stars, and their corresponding convex

hull is shown in blue (dashed). The condition (20) is then

checked, and found to be violated for some of the control

points (but not for γ0 and γ9). As a result, the approximation

of f over the interval [0, 1] is refined by splitting the

interval into [0, 0.3] and [0.3, 1]. The corresponding Bézier

curves are shown in blue and red (second figure), and are

constructed using de Casteljau’s algorithm and by refining

the exponential decay. The corresponding control points are

again indicated by stars (blue for the interval [0, 0.3] and

red for the interval [0.3, 1]). Although the two Bézier curves

yield a much better approximation of f , some of the inner

control points are still violating the constraint, and therefore,

the approximations are refined once more. This leads to

the last figure, where the algorithm terminates, guaranteeing

constraint satisfaction. The required computation amounts

to two matrix multiplications per refinement step (one as

a consequence of de Casteljau’s algorithm and one due to

the multiplication with the exponential decay) and evaluating

(20), which is linear in the number of control points.

V. EXPERIMENTAL RESULTS

The proposed MPC approach is evaluated in real-world

experiments with the Flying Platform, an unmanned aerial
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Fig. 2. The recursive constraint refinement illustrated on a simple example
with three steps. Shown is the original curve (black, solid), its Bézier
approximation according to (19) (solid, colored), the upper and lower bounds
(black, dashed), the control points γk (stars, colored), and their convex hull
(dashed).

Fig. 3. The Flying Platform hovers in the Flying Machine Arena, [27].
Two flaps for redirecting the airflow are mounted below each electric ducted
fan.

vehicle that serves as a testbed for electric ducted fan

actuation. Fig. 3 shows the Flying Platform during flight in

the Flying Machine Arena, [27].4

A. The Flying Platform

1) Hardware: The Flying Platform is powered by three

electric ducted fans, providing each 40N of thrust. It has a

total mass of roughly 8 kg, and an overall dimension of about

1m. The airflow through each ducted fan is redirected by two

control flaps in order to vector the thrust. The three ducted

fans are all rotating in the same direction and therefore thrust

vectoring is essential for stabilizing the vehicle about hover.

4A video showing parts of the experiments with the Flying Platform can
be found under https://youtu.be/GgIwrnoNvTY.

The Flying Platform is controlled by a combination of thrust

vectoring and differential thrust, leading to a total of nine

inputs (two control flaps per fan, one thrust command per

fan, three fans).

Position and attitude information is provided by a motion

capture system, and linear velocity estimates are obtained by

an offboard state-estimation. Both, the position and attitude

information, as well as the linear velocity estimate is sent

to the vehicle via wireless communication. The angular

velocities are measured with an onboard gyroscope.

The PX4 flight management unit5 provides a low-level

interface to the actuators and the onboard gyroscope. The

predictive control algorithm is run on a Gumstix duo-vero

computer-on-module6 that interfaces the PX4 via serial com-

munication. The Gumstix is equipped with an ARM Cortex

A9 dual core processor with a clock frequency of 1 GHz

and with 1 GB random-access memory. The Linux-based

operating system Ubuntu is run on the Gumstix.

2) State-space model: A nonlinear model based on first

principles is linearized about hover. The linearization is

carried out in a yaw-fixed coordinate system leading to a

model that is valid for all yaw orientations. The states are

position, attitude, linear and angular velocity, resulting in a

total of 12 states. The input to the system is given by the

three thrust vectors corresponding to each actuation unit, that

is, u(t) = (T1(t), T2(t), T3(t)) ∈ R
9, where Ti(t) ∈ R

3,

i = 1, 2, 3. The dependence on t is occasionally omitted

to simplify notation. As a result, a standard state-space

description of the dynamics is obtained, where the values

of the system matrices A and B are obtained from a grey-

box system identification, see [28]. Controlling the system

is challenging as the actuation is limited (see below) and

the open-loop system is unstable (with an unstable pole at

around 5 rad/s). The unstable pole is attributed to the fact that

the ducted fans redirect crosswinds that stem, for example,

from horizontal flight, [29].

The thrust commands are related by a one-to-one corre-

spondence to the position commands of the control flaps and

the thrust commands of the ducted fans. The maximum thrust

produced by each fan is limited to Tmax = 40N, whereas the

maximum pivoting angle of the flaps is required to be below

ψmax = 12◦. Linearizing the resulting nonlinear constraints

about hover yields the following actuation limits

Ti3 ∈ [0, Tmax], (21)

Ti1 ∈ tan

(
ψmax

c1

)
Tz [−1, 1], (22)

Ti2 ∈ tan

(
ψmax

c2

)
Tz [−1, 1], (23)

i = 1, 2, 3, where c1 and c2 denote the proportional constants

between thrust angle and flap angle and Tz ∈ R denotes the

steady-state (hover) thrust of each ducted fan. The constants

c1 and c2 are identified from measurements. The components

of the thrust vector Ti ∈ R
3, as generated by the ith fan and

5https://pixhawk.org/modules/px4fmu
6https://www.gumstix.com
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the corresponding control flaps, are denoted by Ti1, Ti2, and

Ti3. Due to the fact that Ti1, Ti2  Ti3, the constraints are

well-approximated by (21)-(23).

B. Implementation details

The matrix Q penalizing the state deviation in the running

cost in (1) is chosen to be7

Q = diag(

position︷ ︸︸ ︷
50, 50, 10,

lin. velocity︷ ︸︸ ︷
10, 10, 10,

attitude︷ ︸︸ ︷
40, 40, 10,

ang. velocity︷ ︸︸ ︷
10, 10, 5 ). (24)

The z-components of the thrust inputs enter the running cost

as

0.1

total thrust︷ ︸︸ ︷(
1

3

3∑
i=1

(Ti3 − Tz)

)2

+0.1

differential thrust︷ ︸︸ ︷
3∑

i,j=1,i �=j

(
Ti3 − Tj3

2

)2

,

(25)

whereas the horizontal thrust components are penalized with

0.01

(
3∑

i=1

2 T 2
i1 + T 2

i2

)
. (26)

The predictive control algorithm runs at 100 Hz, and Alg. 1

is used for solving (6). The quadratic program (9) is solved

with the generalized fast dual gradient method (GFDG), as

presented in [30], which is motivated by a previous study

including a comparison of different first-order optimization

routines, [7]. Moreover, the projection step that is part of the

GFDG method and is itself a (smaller) quadratic program,

is solved using qpOASES, [31]. The optimization problems

that are to be solved tend to vary only slowly over the

different iterations of Alg. 1 and the different time steps,

and therefore, both qpOASES and the GFDG method are

warm-started. Moreover, in the implementation of Alg. 1 the

total number of constraint sampling points (the maximum

number of elements of Ik) is limited to Nmax, and inactive

constraints are only removed if this limit is reached. The set

I0 is chosen as the time instants ti, satisfying

τ(ti)
Tτ(tj) = 0 (27)

for all i, j = 0, 1, . . . , s − 1, with i �= j and t0 = 0. The

choice is motivated in [7]. The constraint (6c) is checked

using the recursive procedure presented in Sec. IV. The

different parameters characterizing the basis functions, as

well as the parameters used for Alg. 1 and the constraint

checking procedure are summarized in Tab. I. The choice s =
5 represents a reasonable trade-off between approximation

quality and computational effort, as motivated by a previous

study, [7].

7Note that all states and inputs are expressed using SI units. However,
for better readability, the units have been omitted in the equations defining
the running cost.

TABLE I

PARAMETERS USED FOR THE IMPLEMENTATION OF THE PREDICTIVE

CONTROL ALGORITHM.

value description

5 s−1 exponential decay of basis functions (λ)

5 number of basis functions (s)

2 number of iterations in Alg. 1 (MAXITER)

10−5 relative tolerance used for solving (9)

10 max. number of refinements in constraint check

0.3 interval division in constraint refinement

5 order of Bézier curve for the exp. decay (ne)

135 maximum number of elements of Ik (Nmax)

C. Results

The predictive controller provides good disturbance rejec-

tion properties in practice. In hover, the average execution

time is roughly 3ms, and the root-mean-square position error

is about 0.02m. Disturbance rejection measurements are

shown in Fig. 4, where a rapid recovery can be observed.

The disturbance consists of an abrupt set point shift in

horizontal direction for 0.3 s before moving the set point back

to where it was. As can be seen in Fig. 4, the execution time

rises immediately when the disturbances are applied, as the

constraints become active. In such cases, Alg. 1 may require

several iterations. The bulk of the computation lies in the

solution of (9), which takes roughly 3 ms. Checking con-

straint satisfaction typically takes 1 ms. For the disturbance

shown in Fig. 4, satisfaction of the constraint (6c) can be

guaranteed and thereby also closed-loop stability. However,

when applying larger disturbances, Alg. 1 might terminate

early. In such cases, closed-loop stability might no longer be

guaranteed.

VI. CONCLUSION

The article presents the implementation details of an online

model predictive control strategy with inherent stability and

recursive feasibility guarantees. An iterative algorithm is

presented for enforcing the constraints over the time interval

[0,∞), and convergence of the algorithm is shown. The al-

gorithm is evaluated in practice by controlling an unmanned

aerial vehicle. The flight tests indicate that the algorithm is

suitable for online predictive control.
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